Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Thorax ; 2023 May 24.
Article in English | MEDLINE | ID: covidwho-20239569

ABSTRACT

BACKGROUND: The COVID-19 pandemic resulted in a large number of critical care admissions. While national reports have described the outcomes of patients with COVID-19, there is limited international data of the pandemic impact on non-COVID-19 patients requiring intensive care treatment. METHODS: We conducted an international, retrospective cohort study using 2019 and 2020 data from 11 national clinical quality registries covering 15 countries. Non-COVID-19 admissions in 2020 were compared with all admissions in 2019, prepandemic. The primary outcome was intensive care unit (ICU) mortality. Secondary outcomes included in-hospital mortality and standardised mortality ratio (SMR). Analyses were stratified by the country income level(s) of each registry. FINDINGS: Among 1 642 632 non-COVID-19 admissions, there was an increase in ICU mortality between 2019 (9.3%) and 2020 (10.4%), OR=1.15 (95% CI 1.14 to 1.17, p<0.001). Increased mortality was observed in middle-income countries (OR 1.25 95% CI 1.23 to 1.26), while mortality decreased in high-income countries (OR=0.96 95% CI 0.94 to 0.98). Hospital mortality and SMR trends for each registry were consistent with the observed ICU mortality findings. The burden of COVID-19 was highly variable, with COVID-19 ICU patient-days per bed ranging from 0.4 to 81.6 between registries. This alone did not explain the observed non-COVID-19 mortality changes. INTERPRETATION: Increased ICU mortality occurred among non-COVID-19 patients during the pandemic, driven by increased mortality in middle-income countries, while mortality decreased in high-income countries. The causes for this inequity are likely multi-factorial, but healthcare spending, policy pandemic responses, and ICU strain may play significant roles.

2.
JAMA ; 329(1): 39-51, 2023 01 03.
Article in English | MEDLINE | ID: covidwho-2287001

ABSTRACT

Importance: The longer-term effects of therapies for the treatment of critically ill patients with COVID-19 are unknown. Objective: To determine the effect of multiple interventions for critically ill adults with COVID-19 on longer-term outcomes. Design, Setting, and Participants: Prespecified secondary analysis of an ongoing adaptive platform trial (REMAP-CAP) testing interventions within multiple therapeutic domains in which 4869 critically ill adult patients with COVID-19 were enrolled between March 9, 2020, and June 22, 2021, from 197 sites in 14 countries. The final 180-day follow-up was completed on March 2, 2022. Interventions: Patients were randomized to receive 1 or more interventions within 6 treatment domains: immune modulators (n = 2274), convalescent plasma (n = 2011), antiplatelet therapy (n = 1557), anticoagulation (n = 1033), antivirals (n = 726), and corticosteroids (n = 401). Main Outcomes and Measures: The main outcome was survival through day 180, analyzed using a bayesian piecewise exponential model. A hazard ratio (HR) less than 1 represented improved survival (superiority), while an HR greater than 1 represented worsened survival (harm); futility was represented by a relative improvement less than 20% in outcome, shown by an HR greater than 0.83. Results: Among 4869 randomized patients (mean age, 59.3 years; 1537 [32.1%] women), 4107 (84.3%) had known vital status and 2590 (63.1%) were alive at day 180. IL-6 receptor antagonists had a greater than 99.9% probability of improving 6-month survival (adjusted HR, 0.74 [95% credible interval {CrI}, 0.61-0.90]) and antiplatelet agents had a 95% probability of improving 6-month survival (adjusted HR, 0.85 [95% CrI, 0.71-1.03]) compared with the control, while the probability of trial-defined statistical futility (HR >0.83) was high for therapeutic anticoagulation (99.9%; HR, 1.13 [95% CrI, 0.93-1.42]), convalescent plasma (99.2%; HR, 0.99 [95% CrI, 0.86-1.14]), and lopinavir-ritonavir (96.6%; HR, 1.06 [95% CrI, 0.82-1.38]) and the probabilities of harm from hydroxychloroquine (96.9%; HR, 1.51 [95% CrI, 0.98-2.29]) and the combination of lopinavir-ritonavir and hydroxychloroquine (96.8%; HR, 1.61 [95% CrI, 0.97-2.67]) were high. The corticosteroid domain was stopped early prior to reaching a predefined statistical trigger; there was a 57.1% to 61.6% probability of improving 6-month survival across varying hydrocortisone dosing strategies. Conclusions and Relevance: Among critically ill patients with COVID-19 randomized to receive 1 or more therapeutic interventions, treatment with an IL-6 receptor antagonist had a greater than 99.9% probability of improved 180-day mortality compared with patients randomized to the control, and treatment with an antiplatelet had a 95.0% probability of improved 180-day mortality compared with patients randomized to the control. Overall, when considered with previously reported short-term results, the findings indicate that initial in-hospital treatment effects were consistent for most therapies through 6 months.


Subject(s)
COVID-19 , Adult , Humans , Female , Middle Aged , Male , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Follow-Up Studies , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Critical Illness/therapy , Bayes Theorem , COVID-19 Serotherapy , Adrenal Cortex Hormones/therapeutic use , Anticoagulants/adverse effects , Receptors, Interleukin-6
4.
JAMA ; 327(13): 1247-1259, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1801957

ABSTRACT

Importance: The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective: To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions: Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from -1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results: The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, -1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, -0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28]; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm). Conclusions and Relevance: Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support-free days within 21 days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Critical Illness , Platelet Aggregation Inhibitors , Venous Thromboembolism , Adult , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Aspirin/adverse effects , Aspirin/therapeutic use , Bayes Theorem , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Critical Illness/mortality , Critical Illness/therapy , Female , Hemorrhage/chemically induced , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/therapeutic use , Purinergic P2Y Receptor Antagonists/adverse effects , Purinergic P2Y Receptor Antagonists/therapeutic use , Respiration, Artificial , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology
5.
JAMA ; 326(17): 1690-1702, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1525402

ABSTRACT

IMPORTANCE: The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive. OBJECTIVE: To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTS: The ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. INTERVENTIONS: The immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). MAIN OUTCOMES AND MEASURES: The primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, -1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. RESULTS: Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11 secondary outcomes. Serious adverse events were reported in 3.0% (32/1075) of participants in the convalescent plasma group and in 1.3% (12/905) of participants in the no convalescent plasma group. CONCLUSIONS AND RELEVANCE: Among critically ill adults with confirmed COVID-19, treatment with 2 units of high-titer, ABO-compatible convalescent plasma had a low likelihood of providing improvement in the number of organ support-free days. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19/therapy , ABO Blood-Group System , Adult , Aged , Critical Illness/therapy , Female , Hospital Mortality , Humans , Immunization, Passive , Length of Stay , Logistic Models , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Treatment Failure , Vasoconstrictor Agents/therapeutic use , COVID-19 Serotherapy
6.
J Intensive Care ; 9(1): 42, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1255975

ABSTRACT

Since the start of the coronavirus disease 2019 (COVID-19) pandemic, it has remained unknown whether conventional risk prediction tools used in intensive care units are applicable to patients with COVID-19. Therefore, we assessed the performance of established risk prediction models using the Japanese Intensive Care database. Discrimination and calibration of the models were poor. Revised risk prediction models are needed to assess the clinical severity of COVID-19 patients and monitor healthcare quality in ICUs overwhelmed by patients with COVID-19.

7.
J Intensive Care ; 9(1): 34, 2021 Apr 14.
Article in English | MEDLINE | ID: covidwho-1183584

ABSTRACT

REMAP-CAP, a randomized, embedded, multifactorial adaptive platform trial for community-acquired pneumonia, is an international clinical trial that is rapidly expanding its scope and scale in response to the COVID-19 pandemic. Japan is now joining REMAP-CAP with endorsement from Japanese academic societies. Commitment to REMAP-CAP can significantly contribute to population health through timely identification of optimal COVID-19 therapeutics. Additionally, it will promote the establishment of a national and global network of clinical trials to tackle future pandemics of emerging and re-emerging infectious diseases, in collaboration with multiple stakeholders, including front-line healthcare workers, governmental agencies, regulatory authorities, and academic societies.

SELECTION OF CITATIONS
SEARCH DETAIL